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a b s t r a c t

Normal Boundary Intersection (NBI) is traditionally used to generate equally spaced and uniformly
spread Pareto Frontiers for multi-objective optimization programming (MOP). This method tends to fail,
however, when correlated objective functions must be optimized using Robust Parameter Designs (RPD).
In such multi-objective optimization programming, there can be reached impractical optima and non-
convex frontiers. To reverse this shortcoming, it is common to apply Principal Component Analysis
(PCA), which provides uncorrelated objective functions. The aim of this paper is to combine the Robust
Parameter Designs, Principal Component Analysis, and Normal Boundary Intersection approaches into
a novel method called RPD-MNBI. This approach finds equally spaced Pareto optimal frontiers that are
capable of minimizing noise variables’ effects. To validate this proposal, this study investigates an end
milling process. The most important empirical finding is that the original correlation structure is pre-
served. On the other hand, the Weighted Sums and Normal Boundary Intersection-Mean Square Error
methods, modify the process behavior, resulting in unreal optima. Finally, confirmation runs using an
L9 Taguchi design were performed for 10%, 50%, and 90% weights. The proposed method provides process
robustness according to confidence intervals for both mean and standard deviation.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Normal Boundary Intersection (NBI) (Das & Dennis, 1998) was
developed mainly to compensate for the shortcomings attributed
to the method of weighted sums (WS) in multi-objective optimiza-
tion programming (MOP). NBI addresses the WS method’s inability
to find—even when using a uniform spread-of-weight vector—a
uniform spread of Pareto optimal solutions. It is possible when
using such a vector for there to emerge a non-convex Pareto set
with missed Pareto points on the concave parts of the trade-off
surface. A pivotal aspect in MOP problems is the presence of strong
correlations among the several estimated response surfaces. This
aspect of multivariate optimization is very common in the industry
and generally promotes unstable regression models and standard
errors of coefficients. As a result, the obtained optimization results
could be unreal (Bratchell, 1989; Brito, Paiva, Ferreira, Gomes, &
Balestrassi, 2014; Govindaluri & Cho, 2007; Jeong, Kim, & Chang,
2005; Kovach & Cho, 2009; Lee & Park, 2006; Paiva et al., 2012;
Paiva, Paiva, Ferreira, Balestrassi, & Costa, 2009; Shaibu & Cho,
2009; Shin, Samanlioglu, Cho, & Wiecek, 2011; Tang & Xu, 2002;
Wu, 2005; Yuan, Wang, Yu, & Fang, 2008).

To find optimal Pareto solutions, Ahmadi, Moghimi, Esmaeel,
Agelidis, and Sharaf (2015) addressed a multi-objective electric
model to integrate the generation of thermal units considering
heat and power dispatch. To achieve these goals, the researchers
employed the NBI method to find the optimal Pareto solution as
the best tradeoff between cost, green-house gas emission and heat
generation. Aalae, Abderrahmane, Gael, and Olivier (2015) per-
formed a coupling between the NBI algorithm with Radial Basis
Function (RBF) to create a simple tool with a reasonable calculation
time to solve multi-criteria optimization problems. Their approach
was able to efficiently solve the multi-criteria shape optimization
problem of structures with nonlinear behavior. Largo, Zhang, and
Vega-Rodríguez (2014) applied NBI with a version of the Multi-
objective Evolutionary Algorithm based on Decomposition
(MOEA/D) for solving tri-objective optimization problems of
telecommunication with objectives. The authors argued that their
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List of acronyms

DOE design of experiment
LCB lower confidence bound
MNBI multivariate normal boundary intersection
MOEA/D Multi-objective Evolutionary Algorithm based on

Decomposition
MSE mean square error
OLS ordinary least squares
QC Quality Characteristics
RPD Robust Parameter Designs
UCB upper confidence bound
WMMSE Weighted Multivariate Mean Square Error

DRS dual response surface
MMSE multivariate mean square error
MOP multi-objective optimization programming
MRPD Multi-objective Robust Parameter Design
NBI Normal Boundary Intersection
PCA Principal Component Analysis
RBF Radial Basis Function
RSM response surface methodology
WLS Weighted Least Squares
WS weighted sums
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procedure had shown very promising results in real-world
telecommunication problems with multiple objective functions.

In addition to the aforementioned papers, Izadbakhsh,
Gandomkar, Rezvani, and Ahmadi (2015) employed the NBI
approach to simultaneously minimize the cost and emission for
an economic/environmental model for optimal energy manage-
ment. Oujebbour, Habbal, Ellaia, and Zhao (2014) applied NBI
and Normalized Normal Constraint Method to generate a set of
Pareto-optimal solution in a MOP problem of a stamping process.
Ganesan, Vasant, and Elamvazuthi (2013) used the NBI method
to generate optimal solutions to the green sand process. Optimiz-
ing multiple responses of rotor-bearing systems, Lopez, Ritto,
Sampaio, and de Cursi (2014) came up with a new robust optimiza-
tion algorithm based on NBI and the penalization of mean and vari-
ance for dealing with non-convex MOP.

Given the findings of these papers, it can be seen that the corre-
lation influence becomes more important in the context of Pareto
Frontiers. Such an effect should be taken into consideration. Since
the procedure weighs two or more objective functions, if the corre-
lation is strong and neglected, the procedure’s weights will pro-
mote an impractical separation in responses. The natural
correlation structure can, as a result of such separation, be highly
affected. One could obtain, in other words, an excellent Pareto
Frontier composed of unrealistic feasible solutions. To avoid such
a Frontier inconsistency, uncorrelated objective functions should
be obtained through response surface designs and principal com-
ponent analyses (PCA). This multivariate technique produces a
new dataset, one that extracts eigenvalues and eigenvectors from
either a covariance or correlation matrix. It is with the new dataset
that uncorrelated response surface models may be built.

Another essential issue in industrial problems is the simultane-
ous optimization of mean and variance. The combined array is an
efficient design of experiment (DOE) approach where the noise
variables are inserted into the matrix of control variables, generally
represented by a central composite design (Montgomery, 2009).
Once the dependent variable (Y) is measured, a full quadratic
model, Y ¼ f ðx; zÞ, is estimated by using the ordinary least squares
(OLS) algorithm. After that, mean and variance equations can be
obtained by taking partial derivatives of the estimated response

surface ðbY Þ with respect to the noise factors (z).
The noise variables’ effect can be expressed as a variance equa-

tion. This optimization approach is called Multi-objective Robust
Parameter Design (MRPD). The simplest MRPD problem is a bi-
objective optimization problem where the two objective functions
are the mean and the variance. Suppose now there are n estimated
models for the mean and the same number of models for the vari-
ance. The MOP problem will then have 2n estimated equations and
n dual response surfaces. It thus becomes a non-trivial task to carry
out the industrial compromise of offering quality products by
employing the simultaneous optimization of blocks of mean and
variance equations (Kazemzadeh, Bashiri, Atkinson, & Noorossana,
2008).

This study differs from the most commonly proposed RPD
approaches in that the weights of the mean and variance equations
of the principal component scores can be obtained from a control-
noise response surface equation. Moreover, the weighted approach
of principal components has already been used successfully by sev-
eral authors (Gomes, Paiva, Costa, Balestrassi, & Paiva, 2013; Lopes
et al., 2013; Peruchi, Balestrassi, Paiva, Ferreira, & Carmelossi,
2013). Besides reducing dimensions, the RPD-MNBI (robust param-
eter optimization based on multivariate normal boundary intersec-
tion) method has two advantages: (i) It considers the correlation
among the multiple responses and (ii) it generates convex Pareto
Frontiers of the mean ðf lÞ and variance ðf r2Þ functions. Accord-
ingly, this paper presents the RPD-MNBI method, a multi-
objective hybrid approach of RPD that couple NBI with PCA for
combined arrays while considering the correlation structure
among the response variables. To illustrate the proposal, this study
uses a case study of a bivariate AISI 1045 steel end milling opera-
tion. The optimization results are statistically validated, confirming
the adequacy of the paper’s proposal.

2. Multi-objective optimization and the NBI technique

Normal Boundary Intersection method (NBI), a MOP procedure
developed by Das and Dennis (1998), was intended to compensate
for the shortcomings attributed to the WS method. According to
Shukla and Deb (2007), the WS approach was unable to come up
with a uniform spread of Pareto optimal solutions, even if a uni-
form spread of weighted vectors had been used. Vahidinasab and
Jadid (2010) also found that if the Pareto set was non-convex,
the Pareto points on the concave parts of the trade-off surface
would be missed. This led to Ganesan et al. (2013) finding that
when solving non-convex MOP, the NBI approach was deemed to
be a more interesting alternative to the WS method.

To use the NBI method, it is necessary to find the payoff matrix
U by a calculation based on the individual minimum of each objec-
tive function. The solution that minimizes the ith objective func-
tion f iðxÞ will be denoted by f �i ðx�i Þ. f iðx�i Þ which is obtained when
the individual optimal solution x�i is substituted in the objective
functions. The payoff matrix U is shown in Eq. 1.
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Fig. 1. NBI Pareto Frontier (Brito et al., 2014).
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The ith row of the payoff matrix U includes the maximum and
minimum values of the functions f iðxÞ, representing their upper
and lower limits. These values can be used to normalize the
objective space, mainly by writing it in terms of different scales
or units. The vector with the set of the individual minima

f U ¼ f �1ðx�1Þ; . . . ; f �i ðx�i Þ; . . . ; f �mðx�mÞ
� �T is called the Utopia point. The

Utopia point, according to Vahidinasab and Jadid (2010), is a speci-
fic point, generally outside the feasible region, that corresponds to
all objectives simultaneously being at their best possible values. In
contrast, by constructing a vector with the maximum values of

each objective function f N ¼ f N1 ; . . . ; f
N
i ; . . . ; f

N
m

h iT
, we obtain the

Nadir point. This is the point where all objectives are simultane-
ously at their worst values. The Utopia and Nadir points make up
the anchor points, which are obtained when the ith objective is
minimized independently, while f �i represents the individual
minima of the ith objective. All of the points mentioned above
are illustrated for a bi-objective case in Fig. 1.

The normalization of the objective functions can be obtained by
using the two following special sets:

�f ðxÞ ¼ f iðxÞ � f Ui
f Ni � f Ui

i ¼ 1; . . . ;m ð2Þ

This normalization leads to the normalized payoff matrix U.
An effective criterion to combine the mean and variance

responses in dual response optimization is the mean square error
(MSE). This approach has been used by such researchers as
Köksoy (2006) and Vining and Myers (1990). The simultaneous
optimization of mean and variance for multiple independent
and uncorrelated responses subject only to the experimental
region constraint (Cho & Park, 2005; Kazemzadeh et al., 2008;
Kovach & Cho, 2009; Lee & Park, 2006; Paiva et al., 2012; Shin
et al., 2011; Steenackers & Guillaume, 2008), can be seen in
Eq. (3):

Minimize MSE ¼ l̂ xð Þ � T½ �2 þ r2ðxÞ
Subject to x 2 X

ð3Þ

where T is the target for process mean l xð Þ. Thus, the expression

l̂ xð Þ � T½ �2 represents the mean deviation from the target,
which would allow even greater reduction of variability in the
process.

In certain cases, the mean and the variance can take different
values due to the degree of importance assigned to each of them.
To remedy this, the weighted MSE approach can be formulated
as follows:

Minimize MSEw ¼ w1 l̂ xð Þ � T½ �2 þw2 r̂2ðxÞ� �
Subject to x 2 X

ð4Þ

where the weights w1 and w2 are pre-specified positive constants
(Kazemzadeh et al., 2008; Tang & Xu, 2002). By changing the
weights, such that w1 þw2 ¼ 1 and w1 > 0, w2 > 0, Tang and Xu
(2002) showed that the multiple objective optimization generates
a set of non-inferior solutions.

Based on combined arrays for a robust parameter optimiza-
tion, Brito et al. (2014) implemented a dual response surface
(DRS) method using the NBI algorithm and mean square error
(MSE) functions for several characteristics with f i(x) =MSEi(x),
as proposed by Govindaluri and Cho (2007). Dealing with
mean–variance optimization problems, their approach was
capable of generating equally spaced Pareto Frontiers for
bi-objective processes. The bi-dimensional NBI approach for
MSE functions can be written as:
Min �f 1 xð Þ ¼ MSEi xð Þ �MSEI
i xð Þ

MSEmax
i xð Þ �MSEI

i xð Þ

 !

s:t: : g1 xð Þ ¼ MSE1 xð Þ �MSEI
1 xð Þ

MSEmax
1 xð Þ �MSEI

1 xð Þ

 !
� MSE2 xð Þ �MSEI

2 xð Þ
MSEmax

2 xð Þ �MSEI
2 xð Þ

 !
þ 2w� 1 ¼ 0

g2 xð Þ ¼ xTx 6 q2

0 6 w 6 1

ð5Þ

with : MSEi xð Þ ¼ l̂i xð Þ � Tið Þ2 þ r2
i xð Þ ð6Þ

l̂i xð Þ ¼ Ez y x; zð Þ½ � and r2
i xð Þ ¼ r2

zi

Xr
i¼1

@y x; zð Þ
@zi

� �2( )
þ r2

In Eq. (5), MSEI
iðxÞ is the utopia value used to optimize each

MSEiðxÞ, restricted only to the experimental region. The denomina-
tor MSEmax

i ðxÞ �MSEI
iðxÞ is used to normalize the variability mea-

sures for the m Quality Characteristics – QCs (Govindaluri & Cho,
2007). It stands for the normalization of multiple responses,
obtaining MSEmax

i ðxÞ as the maximum value of the payoff matrix
(matrix formed by all solutions observed in the individual
optimizations).

However, most real problems are not limited to only two
responses. Additionally, the correlation among responses can sub-
stantially influence the values of the y(x, z) regression coefficients
bið Þ, and this, according to Bratchell (1989), cannot be ignored.
Such influence could impair the quality of DRS derived from y(x,
z). The individual analysis of each response may lead to conflicting
optima (Hair, Black, Babin, & Anderson, 2009; Yuan et al., 2008).
One may deal with this correlation influence by using Principal
Component Analysis (PCA).
3. Multivariate and multi-objective robust parameter
optimization

PCA is a multivariate analysis technique used widely to reduce
problem dimensionality and to extract information from original
data through linear transformation (Xu & Lu, 2011). Johnson and
Wichern (2007) described PCA as follows: Suppose that f 1 xð Þ;
f 2 xð Þ; . . . ; f p xð Þ are correlated functions written from a random

vector YT ¼ Y1;Y2; . . . ; Yp
� �

. Accepting R as a variance–covariance
matrix associated with this vector, then R can be factored into
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pairs of eigenvalues–eigenvectors ki; eið Þ; . . . P kp; ep
� �

where
k1 P k2 P � � � P kp P 0 such that the ith linear combination is
PCi ¼ eTi Y ¼ e1iY1 þ e2iY2 þ � � � þ epiYp with i ¼ 1;2; . . . ; p.

Paiva, Gomes, Peruchi, Leme, and Balestrassi (2014) proposed
an alternative hybrid approach, combining response surface
methodology (RSM) and PCA to optimize multiple correlated
responses in a turning process. The constrained nonlinear pro-
gramming problemwritten in terms of principal components could
be expressed as shown in Eqs. (7) and (8).

Minimize : PC1 ¼ b0 þ
Xk
i¼1

bixi þ
Xk
i¼1

biix
2
i þ

X
i<j

X
bijxixj ð7Þ

Subject to : xTx 6 q2 ð8Þ
Optimal values can be obtained by locating the stationary point

of the multivariate-fitted surface. The objective is to find the values
of x’s that optimize the multivariate objective function (PC1), sub-
ject only to the constraint that defines the region of interest X.
However, the first principal component alone may not explain the
amount of variance–covariance structure of the original responses.
Due to this drawback, Paiva et al. (2014) considered the eigenvalues
of the correlation matrix as a set of weights used to combine the
principal components into WMI ¼Pr

p¼1 kp PCp
� �� �

. Therefore, the
multivariate optimization problem can be written as:

Miximize : WMI ¼ b0 þ
Xk
i¼1

bixi þ
Xk
i¼1

biix
2
i þ

X
i<j

X
bijxixj ð9Þ

Subject to : xTx 6 n2 ð10Þ
Extending the traditional mean square error (MSE) approach to

the multivariate case, several authors (Gomes et al., 2013; Lopes
et al., 2013; Paiva et al., 2014, 2012, 2009) have employed the mul-
tivariate mean square error (MMSE) method to optimize correlated
multiple responses. In the original approach, Paiva et al. (2009)
combined PCA and RSM to build MMSE functions to deal with mul-
tidimensional nominal-the-best problems. The MMSE formulation
can be written as follows:

Min MMSET ¼
Ym
i¼1

MMSEi ki P 1jð Þ
" #ð1mÞ

¼
Ym
i¼1

PCi � fPCi

� �2 þ ki ki P 1j
h i( )ð1mÞ

;m 6 p

S:t: xTx 6 q2

ð11Þ

where

fPCi
¼ eTi Z Yp fYp

��	 
h i
¼
Xp
i¼1

Xq
j¼1

eij Z Yp fYp

��	 
h i
i ¼ 1;2; . . . ; p; j ¼ 1;2; . . . ; q ð12Þ

where m is the number of MMSE functions according to the signif-
icant principal components, PCi is the fitted second-order polyno-
mial, fPCi

the target value of the ith principal component (that
must keep a straightforward relation with the targets of the original
data set), xTx 6 q2 the experimental region constraint; ei represents
the eigenvector set associated with the ith principal component,
and fYp represents the target for each of the p original responses.

The model in Eq. (11) can be modified to reflect the degree of
importance of the original responses. The alternative model was
presented by Gomes et al. (2013):

MinWMMSET ¼
Xm
i¼1

ti
tT

:WMMSEi

� �
¼
Xm
i¼1

ti
tT

: PC�
i �nPCi

� �2þk�i
h i� �

:m6 p

Subject to : gn xð Þ6 0

ð13Þ
where WMMSET is the Total Weighted Multivariate Mean Square
Error, WMMSEi is the Weighted Multivariate Mean Square Error
for the ith principal component, m the number of needed principal
components, p the number of responses, ti the degree of explana-
tion for the ith principal component, such that

P
ti ¼ tT ; PC�

i the
response surface function for the ith principal component obtained
with the weighted responses, f�PCi the target for the ith principal
component obtained with the weighted responses, k�i the eigen-
value for the ith principal component obtained with the weighted
responses, and gn xð Þ 6 0 are the constraint equations.

When noise and the control variables are put together in a com-
bined array, it is common to obtain a reduced value for the
adjusted coefficient. When this happens, it is necessary to apply
WLS to correct the fit of the model. Lopes et al. (2013) showed that
by using the inverse of the multivariate uncertainty as a weighting
matrix for principal component scores, it is possible to replace the
original correlated dataset and achieve the desired level of R2

Adj. Eq.
14 was used to identify the multivariable uncertainty. It was used
in Eq. 15 for weighting the scores of the principal components by
weighted least square (WLS):

u2
m PCð Þ ¼ e1

rxi

 �2

u2 xið Þ þ e2
rxj

 !2

u2 xj
� �þ 2� e1

rxi

 �
� e2

rxj

 !
� u xið Þ � u xj

� �� r xi; xj
� � ð14Þ

W ðPCÞ ¼ 1
u2
m PCð Þ

 �
ð15Þ

Taguchi (1986) proposed a set of techniques to identify the val-
ues of x to achieve a robust performance. The control parameters x
were varied according to an orthogonal array (‘‘control” or ‘‘inner”
array). In each setting of the control parameters, the effects of noise
variables were evaluated by varying them systematically using a
‘‘noise” or ‘‘outer” array. The main objective was to identify the
appropriate settings of the control parameter at which the system’s
performance remains robust against uncontrollable variations in z
(Shahriari, Haji, & Eslamipoor, 2014). Montgomery (2009) found
that these interactions could not be estimated since the means
and variances were in a crossed array structure, calculated over
the same levels of noise variables. To circumvent this situation,
Vining and Myers (1990) proposed alternatives to Taguchi’s model.
They combined control and noise factors in a single array, so that
noise and control interactions could be estimated. The general
response surface model involving control and noise variables, orga-
nized in a combined array, may be written as:

y x; zð Þ ¼ b0 þ
Xk
i¼1

bixi þ
Xk
i¼1

biix
2
i þ

X
i<j

X
bijxixj þ

Xr
i¼1

cizi

þ
Xk
i¼1

Xr
j¼1

dijxizj þ e ð16Þ

where k and r are the number of control and noise variables.
Assuming that noise variables and random error are not corre-

lated and that the variables are independent with zero mean and
variance r2

z

� �
, Montgomery (2009) showed that the models for

the mean and variance can be written as:

Ez y x; zð Þ½ � ¼ f xð Þ ð17Þ

Vz y x; zð Þ½ � ¼ r2
zi

Xr
i¼1

@y x; zð Þ
@zi

� �2( )
þ r2 ð18Þ

In a multivariate context, Paiva et al. (2012) integrated MMSE
functions to RPD designs based on crossed arrays. Their MRPD
approach consisted of calculating MSE functions for each run in a
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crossed array. After that, scores of principal components are
obtained from MSEs, and the MMSE (MRPD) model is applied
according to Eqs. (11) and (12). Conjoining PCA and RPD based
on combined array, Paiva et al. (2014) proposed a optimization
method to minimize the noise variables’ effects on multiple corre-
lated QCs. In their approach, the weighted sum of multivariate
mean square error functions for the mean and variance blocks have
been implemented according to Eqs. (19) and (20):

Min FðxÞ¼
Ym
i¼1

x � Ez Pc x;zð Þi
� �� fPCzi

� �2þ
1�xð Þ � r2

z �
Xr
j¼1

@Pc x;zð Þi
@zj

	 
2
þr2

" #2664
3775

/i Xm�r

i¼1

/i P n

�����
8>><>>:

9>>=>>;
ð 1Pm�r

i¼1
/i

Þ

ð19Þ

s:t: : xTx6q2

with : fPCzi ¼ e1i Z Y1 fY1

��� �� �þe2i Z Y2 fY2

��� �� �þ�� �þepi Z Yp fYp

��	 
h i
ð20Þ

Pc x;zð Þi ¼ b0þ
Xk
i¼1

bixiþ
Xk
i¼1

biix
2
i þ
X
i<j

X
bijxixjþ

Xk
i¼1

ciziþ
Xk
i¼1

Xr
j¼1

dijxizjþe

 !
i

i¼1;2; . . . ;m
x¼ x1;x2; . . . ;xk½ �
z¼ z1;z2; . . . ;zr½ �

The value of fYp corresponds to a single objective optimization
obtained as fYp ¼ Minx2X ŷi xð Þ½ � and Z represents the standardized
value of the ith response considering the target fYp , such that

Z Yp fYp
��� � ¼ fYp

� �� lYp

h i
� rYp
� ��1. Furthermore, the term /i is an

exponent that stands for the relative importance of each principal
component.

4. NBI coupled with PCA for combined arrays

Consider now the use of the NBI method combined with the
PCA optimization routine. First, it is necessary to establish two
functions: f ðlÞ xð Þ, which represents the block of the correlated
mean responses, and f ðr2Þ xð Þ, which represents the block of vari-
ance responses, as such:

f ðlÞ xð Þ ¼
Xp
i¼1

kp
PCðlÞi � fPCðlÞi

fPCðlÞi

 !2
24 35 kp P 1

� � [ kpP
kp

P n

 �
p ¼ 1;2; . . . ; P ð21Þ

f ðr2Þ xð Þ ¼
Xp
i¼1

kp
PCðr2Þi � fPC r2ð Þi

fPCðr2Þi

 !2
24 35 kp P 1

� � [ kpP
kp

P n

 �
p ¼ 1;2; . . . ; P ð22Þ

Considering the payoff matrix established for f ðlÞ xð Þ and f ðr2Þ xð Þ,
we obtain the following normalized performance measures:

�f ðlÞ xð Þ ¼ f ðlÞ xð Þ � f UðlÞ
f NðlÞ � f UðlÞ

¼ f ðlÞ xð Þ � f IðlÞ
f MAX
ðlÞ � f IðlÞ

ð23Þ

�f ðr2Þ xð Þ ¼ f ðr2Þ xð Þ � f Uðr2Þ

f Nðr2Þ � f Uðr2Þ
¼ f ðr2Þ xð Þ � f Iðr2Þ

f MAX
ðr2Þ � f Iðr2Þ

ð24Þ

Using the original NBI formulation, the optimization RPD-MNBI
approach can be written as:

Min �f ðlÞ xð Þ ¼ f ðlÞ xð Þ� f IðlÞ
f MAX
ðlÞ � f IðlÞ

" #

s:t: : �g1ðl;r2 Þ
xð Þ ¼ f ðlÞ xð Þ� f IðlÞ

f MAX
ðlÞ � f IðlÞ

" #
� f ðr2Þ xð Þ� f Iðr2Þ

f MAX
ðr2Þ � f Iðr2Þ

" #
þ2wi�1¼ 0

g2 xð Þ ¼ xTx6q2

06wi 6 1

ð25Þ
PC xð Þi ¼ b0 þ
Xk
i¼1

bixi þ
Xk
i¼1

biix
2
i þ

X
i<j

X
bijxixj þ e

 !
i

i ¼ 1;2; . . . ;p; j ¼ 1;2; . . . ; q

ð26Þ

To illustrate the RPD-MNBI procedure, Fig. 2 shows the overall
structure, consisting of nine steps. In Step 1, an adequate combined
array is defined as the experimental design, including as many con-
trol and noise variables as desired. The experiments are run in a
random order and the responses are stored. In Step 2, the results
from Step 1 are used to identify the correlation between the
responses, and PCA is performed. Using the correlation matrix, PC
scores are extracted from the original responses and they are
stored with the respective eigenvalues and eigenvectors. In Step
3, the OLS algorithm is used and the results are analyzed. In PCA,
the number of PCs is chosen to explain at least 80% of the model
variance. The obtained R2

Adj is important for the models. If the R2
Adj

is inadequate, the approach used by Lopes et al. (2013) and defined
by Eq. (14) is used for PCA, while for the original response, WLS is
used (as described in Step 4). In Step 4, the WLS method is applied
to the original responses using as weights the inverse of the quad-
ratic residuals. For PCA, the inverse of multivariate uncertainty
generated by Eq. (15) is used as the weight. In Step 5, the equations
for the mean and variance of y x; zð Þi and Pc x; zð Þi are computed

using Eqs. (17) and (18). In Step 6, the response targets fYp

	 

are

obtained using the individual constrained minimization of each
response surface, i.e. fYp ¼ Minx2X ŷi xð Þ½ � and the original targets

fYp

	 

are transformed in PC-targets using the identity

fPCi
¼Pp

i¼1

Pq
j¼1eij Z Yp fYp

��	 
h i
. In Step 7, the desired values for

xl and xr2 (mean and variance weights) are chosen, generally
using the range [0; 1], and the value of the percentage of explana-
tion for PCi /ið Þ is observed. This value is needed only if the practi-
tioner needs more than one principal component. In Step 8, the
payoff matrix calculation is performed using mean, variance, and
targets to build each MSE function for individual responses or for
each PC. After that, the individual optimization (Eq. (1)) of each

PC function is computed as: Minx2X PCðlÞi � fPC lð Þi
� �

=fPC lð Þi
� �2 þ r2.

Then the scalarization of PC1 for a bivariate case is computed
according to Eqs. (23) and (24). In Step 9, using the generalized
reduced gradient (GRG) algorithm, the minimum value of the
MSE or PC ðFiÞðxÞ—computed in Step 8—is obtained using as con-
straints the experimental region, non-negative variances, or some
other constraint gi(x) desired by the practitioner. Then a uniform
spread of the Pareto Frontier is created from these results.

5. Experiment, results and discussion

This section presents a numerical illustration of our model and
checks its acceptability. It also compares the results from the fol-
lowing methods: Weighted Sum, NBI-MSE, and RPD-MNBI.

5.1. Experiment description

To achieve this paper’s aims, a set of 82 experiments, provided
by Brito et al. (2014), were carried out in a finishing end milling
operation of AISI 1045 steel. The tool used was a positive end mill,
code R390–025A25-11 M with a 25 mm diameter, an entering
angle of vr ¼ 90�, and a medium step with 3 inserts. Three rectan-
gular inserts were used with edge lengths of 11 mm each, code
R390-11T308M-PM GC 1025 (Sandvik, 2010). The tool material
used was cemented carbide ISO P10 coated with TiCN and TiN
via the PVD process. The coating hardness was approximately
3000 HV3 and the substrate hardness 1650 HV3, with a grain size
smaller than 1 lm.
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The work piece material was AISI 1045 steel with a hardness of
approximately 180 HB. The work piece dimensions were rectangu-
lar blocks with square sections of 100 � 100 mm and lengths of
300 mm. All the milling experiments were carried out in a FADAL
vertical machining center, model VMC 15, with a maximum spin-
dle rotation of 7500 RPM and 15 kW of power in the main motor.
The tool overhang was 60 mm. The cutting fluid used in the exper-
iments was synthetic oil Quimatic MEII. Following the experimen-
tal sequence for a combined array suggested by Montgomery
(2009), a CCD for k = 7 variables (x1; x2; x3; x4; z1; z2 and z3) with
10 center points were created, also deleting the axial points related
to the noise variables. The levels for control and noise factors are
described in Tables 1 and 2, respectively (Lopes, Brito, Paiva,
Peruchi, & Balestrassi, in press) here reproduced.

The different noise conditions furnished by a combination of
factors and levels described in Table 2 express, in some sense,
the possible variation that can occur during the end milling oper-
ation, such as the tool flank wear (z1), the variations in cutting fluid
concentration (z2), and the variation of cutting fluid flow rate (z3).
The surface roughness values are expected to suffer some kind of
Table 1
Control factors and respective levels.

Parameters Unit Symbol Leve

�2.8

Feed rate, x1 mm/tooth fz 0.01
Axial depth of cut, x2 mm ap 0.064
Cutting speed, x3 m/min Vc 254
Radial depth of cut, x4 mm ae 12.26
variation due to the action of the combined noise factors. There-
fore, RPD’s main objective is to determine the setup of control
parameters capable of achieving a reduced surface roughness with
minimal variance, mitigating the influence of noise factors on the
process performance.

Measurements of the tool flank wear ðVBmaxÞðz1Þ were captured
with an optical microscope (magnification 45X) with images
acquired by a coupled digital camera. The criteria adopted as the
end of tool life was a flank wear of approximately
VBmax ¼ 0:30 mm.

The responses measured in the end milling process were Ra (the
arithmetic average surface roughness) and Rt (the maximum
roughness height - distance from highest peak to lowest valley).
These QCs were assessed using a Mitutoyo portable roughness
meter, model Surftest SJ 201, with a cut-off length of 0.25 mm. This
procedure resulted in 82 experiments, described in Lopes et al. (in
press). The two surface roughness metrics were measured three
times at each of three positions on the work piece, computed after
determining the mean of the nine measurements.

5.2. Results from the Weighted Sums and NBI-MSE methods

The Pearson’s correlation (Step 2) of Ra and Rt was 0.965 with a
P-value = 0.000, representing a strong level of correlation with sta-
tistical significance. The OLS algorithm (Step 4) produced R2

Adj of Ra

of 70.08% and 71.22% for Rt. Both results can be considered unac-
ceptable for the model. Thus, applying the WLS method, using as
weights the inverse of the quadratic residual (Step 5), the response
surfaces with R2

Adj for Ra ¼ 99:9% and Rt ¼ 99:1% were obtained
and given by the following equations:

Raðx; zÞ ¼ 0:689þ 0:898x1 þ 0:041 x2 � 0:066 x3 � 0:004 x4

þ 0:102 z11 þ 0:002z2 þ 0:005 z3 þ 0:493 x21
þ 0:096 x22 þ 0:010x23 þ 0:064 x24 þ 0:074 x1x2

� 0:088 x1x3 þ 0:030 x1x4 þ 0:048 x1z1

� 0:086 x1z2 þ 0:042 x1z3 � 0:039 x2x3

þ 0:018x2x4 þ 0:013 x2z1� 0:073 x2z2

� 0:012 x2z3 þ 0:043 x3x4 þ 0:020 x3z1

� 0:034 x3z2 � 0:041 x3z3 � 0:052 x4z1

� 0:013 x4z2 � 0:025 x4z3 ð27Þ

Rtðx; zÞ ¼ 4:72þ 3:17 x1 þ 0:251 x2 � 0:261 x3 þ 0:046 x4

þ 0:877 z1 þ 0:040 z2 � 0:049 z3 þ 1:04 x21
þ 0:176 x22 þ 0:000 x23 þ 0:173 x234 þ 0:498 x1x2

� 0:225 x1x3 þ 0:233 x1x4 þ 0:310 x1z1

� 0:291 x1z2 þ 0:188 x1z3 � 0:0205 x2x3

þ 0:164 x2x4 � 0:087 x2z1 � 0:210 x2z2

� 0:127 x2z3 þ 0:181 x3x4 þ 0:128 x3z1

� 0:109 x3z2 þ 0:042 x3z3 � 0:158x4z1

� 0:016 x4z2 þ 0:157 x4z3 ð28Þ
ls

28 �1.000 0.000 1.000 2.828

0.10 0.15 0.20 0.29
0.750 1.125 1.500 2.186
300 325 350 396
15.00 16.50 18.00 20.74



Table 2
Noise factors and respective levels.

Noise factors Unit Symbol Levels

�1 0 +1

Tool flank wear Mm Z1 0.00 0.15 0.30
Cutting fluid concentration % Z2 5 10 15
Cutting fluid flow rate l/min Z3 0 10 20

Table 3
PCA: Ra and Rt.

Eigenvalue 1.9651 0.0349
Proportion 0.9830 0.0170
Cumulative 0.9830 1.0000

Eigenvectors PC1 PC2
Ra 0.7070 0.7070
Rt 0.7070 �0.7070

Table 4
Pay off matrix.

PC(l)1 PCðr2Þ1

0.01007 0.11021
2.03894 1.98296
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Following Steps 6, 7, and 8, the mean and variance are com-
puted using the combined array written in terms of only control
variables, although the noise factors were used during the experi-
mentation. To perform the payoff matrix calculation for a bi-
objective case, Eq. (29) is used:

U ¼ MSEI
1ðxÞ MSEmax

1 ðxÞ
MSEmax

2 ðxÞ MSE1
2ðxÞ

" #
ð29Þ

In Step 12, using the values of the Payoff matrix, the scalariza-
tion of the MSE function is obtained. For the bivariate case, Eq. (30)
is used.

f ðxÞ ¼ f iðxÞ � f Ui
f Ni � f Ui

)
f 1ðxÞ ¼ MSE1ðxÞ ¼ MSE1ðxÞ�MSEI1

MSEMax
1 �MSEI1

f 2ðxÞ ¼ MSE2ðxÞ ¼ MSE2ðxÞ�MSEI2
MSEMax

2 �MSEI2

8><>:
9>=>; ð30Þ
Table 5
Optimization results for RPD-MNBI.

Weights Coded parameters

W1 W2 x1 x2 x3 x4

1.00 0.00 �1.239 �0.008 �1.263 0.933
0.95 0.05 �1.230 0.056 �1.241 0.972
0.90 0.10 �1.220 0.119 �1.214 1.012
0.85 0.15 �1.209 0.183 �1.182 1.053
0.80 0.20 �1.197 0.245 �1.144 1.095
0.75 0.25 �1.183 0.305 �1.100 1.140
0.70 0.30 �1.167 0.361 �1.048 1.188
0.65 0.35 �1.148 0.409 �0.984 1.236
0.60 0.40 �1.124 0.442 �0.861 1.256
0.55 0.45 �1.098 0.469 �0.766 1.308
0.50 0.50 �1.071 0.486 �0.698 1.381
0.45 0.55 �1.043 0.495 �0.651 1.466
0.40 0.60 �1.013 0.492 �0.594 1.542
0.35 0.65 �0.978 0.475 �0.515 1.598
0.30 0.70 �0.939 0.453 �0.451 1.646
0.25 0.75 �0.898 0.431 �0.410 1.685
0.20 0.80 �0.856 0.412 �0.393 1.716
0.15 0.85 �0.814 0.398 �0.397 1.738
0.10 0.90 �0.774 0.389 �0.415 1.754
0.05 0.95 �0.736 0.382 �0.442 1.766
0.00 1.00 �0.701 0.378 �0.473 1.772

Correlation = 0.9916
The generalized reduced gradient (GRG) algorithm is used to
minimize the MSE. However, given that the variance equation
takes the noise effect into account, the adjustment of the control
factors leads to the minimization of the process variability, guaran-
teeing the robustness of the end milling process.

5.3. Results of RPD-MNBI for combined array

Results showed that the two original responses, Ra and Rt, were
strongly dependent (0.965 with P-value = 0.000). The PC scores
were extracted and the OLS algorithm was applied. It can be
observed that the first principal component, shown in Table 3,
explains about 98.30% of variance–covariance structure estab-
lished between Ra and Rt and that the R2

Adj value is 71.63%.
The approach used by Lopes et al. (2013) and shown in Eq. (14)

was used, and the WLS method was applied using as a weighted
matrix the inverse of the multivariate uncertainty for the PC calcu-
lated by Eq. (15). As a result, R2

Adj = 96.90% and the respective PC1

(RaRt) equations can be written as:

l½PCðx;zÞ� ¼ �0:655þ 1:344 x1 þ 0:102 x2 � 0:119 x3

þ 0:0175 x4 þ 0:265z1 þ 0:0084 z2 � 0:0100 z3

þ 0:623 x1x1 þ 0:106 x2x2 þ 0:0181 x3x3

þ 0:0843 x4x4 þ 0:165 x1x2 � 0:122 x1x3

þ 0:102 x1x4 þ 0:133 x1z1 � 0:138 x1z2

þ 0:0702 x1z3 � 0:0394 x2x3 þ 0:0588 x2x4

þ 0:0030 x2z1 � 0:113 x2z2 � 0:0495 x2z3

þ 0:0678 x3x4 þ 0:0392 x3z1 � 0:0476 x3z2

� 0:0108 x3z3 � 0:0609 x4z1 � 0:0365 x4z2

þ 0:0271 x4z3 ð31Þ
and

r2½PCðx;zÞ� ¼ 0:2651þ0:1333 x1þ0:0030 x2þ0:0392 x3�0:0609 x4ð Þ2

þð0:0084�0:1377 x1�0:1128 x2�0:0476 x3�0:0365 x4Þ2

þ �0:0100þ0:0702 x1�0:0495 x2�0:0108 x3þ0:0271 x4ð Þ2
ð32Þ
Responses f ðlÞ f ðr2Þ

Ra Rt Var Ra Var Rt

0.262 2.076 0.920 1.335 0.010 2.039
0.264 2.074 0.919 1.312 0.010 2.033
0.267 2.078 0.917 1.290 0.011 2.028
0.271 2.088 0.915 1.269 0.011 2.023
0.277 2.105 0.914 1.247 0.012 2.018
0.285 2.130 0.913 1.225 0.014 2.013
0.294 2.165 0.911 1.205 0.015 2.008
0.303 2.211 0.910 1.185 0.018 2.004
0.313 2.278 0.909 1.168 0.021 2.000
0.324 2.349 0.908 1.151 0.025 1.997
0.337 2.425 0.907 1.135 0.029 1.994
0.351 2.505 0.907 1.121 0.034 1.991
0.365 2.593 0.907 1.111 0.041 1.989
0.378 2.692 0.907 1.105 0.047 1.987
0.391 2.794 0.907 1.102 0.055 1.986
0.402 2.895 0.906 1.101 0.063 1.985
0.413 2.994 0.906 1.102 0.072 1.984
0.424 3.089 0.906 1.103 0.081 1.983
0.434 3.178 0.905 1.105 0.091 1.983
0.444 3.262 0.905 1.106 0.100 1.983
0.454 3.340 0.904 1.108 0.110 1.983
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Fig. 6. Experimental values vs. values predicted by RPD-MNBI and MSE methods.
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Now, using Eqs. (21) and (22), we obtain f ðlÞ xð Þ = 0.029 and
f ðr2Þ xð Þ = 1.994 and their values can be used in the NBI method
with PCA optimization. The next step is the computation of the
payoff matrix based on Eqs. (21) and (22). The payoff matrix is
shown in Table 4.

The optimization approach through RPD-MNBI, written as Eq.
(25), produced roughness values for Ra and Rt and also measures
for f ðlÞ xð Þ and f ðr2Þ xð Þ, that are given in Table 5. Notice that the cor-
relation that existed in the original response remains present for
roughness values generated by the optimization model. Thus, we
can conclude that the correlation present in the original responses
are passed on to the scores of principal components, which in turn
are transferred to the responses generated by the optimization
model.

As a result of these transfers, a Pareto optimal surface, given in
Fig. 3(a), was generated as expected and can be compared with the
frontier generated by the method of weighted sums in Fig. 3(b).

The Pareto Frontiers generated for the mean versus variance of
Ra and Rt are given in Figs. 4 and 5.

In Fig. 6, three sets of data are displayed. The experimental val-
ues are represented by white circles, the values predicted by the
MSE model are in black bullets, and the optimum values predicted
by the RPD-MNBI model are in red squares. Notice that the greatest
concentration is located at the bottom of the graph, due to the
equation that minimized the roughness values.

Focusing on the lower end of the graph, as shown in Fig. 7,
notice that the values predicted by the MSE model deviate from
the experimental data set and the optimum values predicted by
RPD-MNBI model.

The mean square error (MSE) was the method applied to gener-
ate the optimum points given by the set of black bullets in the
orthogonal observed in Fig. 8. This optimization produced a



Fig. 7. Zooming in on the optimal points.
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negative correlation (�0.8023, see Table 6) for Ra and Rt roughness,
whereas, RPD-MNBI method generated optimum points given in
red squares which preserved a positive correlation (0.9916), shown
above in Table 5.

Govindaluri and Cho (2007) applied the MSE method in a robust
design modeling with correlated QCs. They reported that these
models either considered independent QCs or investigated the
RD optimization for a single QC. Govindaluri and Cho (2007) fur-
ther showed that these models had not clearly captured statistical
correlations among QCs.
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Fig. 8. Power curve with w = 0.1(a
In conclusion, the evidence cited above must explain why the
MSE model independently calculated the values for Ra and Rt and
as a result generated a negative correlation.
5.4. Validation runs

In robust design optimization the idea is to discover a configu-
ration of control factors that are insensitive to the actions of the
uncontrollable ones. But before performing the validation runs, it
is necessary to define the size of the experiment. Initially, power
and sample size sensitivities were performed to guarantee enough
certainty in detecting differences of magnitude 0.2 for Ra and 1.8
for Rt. Fig. 8(a), (b), and (c) shows the power curves for Ra based
on the variance with w = 0.1, w = 0.5 and w = 0.9. The power curves
for Rt was performed on the same basis.

Thus, the power curve withw = 0.1,w = 0.5, andw = 0.9 indicate
the need for 4, 5, and 10 samples, with power over 82%. As a result,
27 samples were chosen.

To test this claim with the process under study, L9 Taguchi
design was used to assess the behavior of the optimum setup in
a range of scenarios formed by the noise factors. If the setup is to
be robust, the noise factors will be statistically insignificant when
the L9 analysis is performed. The validation runs began with the
choosing of 3 from 21 points on the Pareto Frontier. The optimal
condition associated with the weights w = 0.10, w = 0.50, and
w = 0.90 were chosen. At these levels of importance, the optimum
vectors (in coded units) were X�

w¼0:10 = [�0.774 0.389 � 0.415
1.754], X�

w¼0:50 = [�1.071 0.486 � 0.698 1.381] and X�
w¼0:90 =

[�1.220 0.119 � 1.214 1.012]. Keeping these setups fixed along
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), w = 0.5 (b) and w = 0.9 (c).



Table 6
Optimization by MSE model.

Weights NBI

W1 W2 x1 x2 x3 x4 Ra Rt r2Ra r2Rt MSE1 MSE2

0.00 1.00 �1.4502 0.8551 �0.3471 1.0223 0.4461 1.9773 0.9101 1.1843 0.9568 1.2173
0.05 0.95 �1.4344 0.8423 �0.4079 1.0328 0.4352 1.9791 0.9099 1.1840 0.9519 1.2177
0.10 0.90 �1.4180 0.8263 �0.4716 1.0413 0.4236 1.9811 0.9097 1.1844 0.9471 1.2188
0.15 0.85 �1.4007 0.8070 �0.5384 1.0473 0.4114 1.9835 0.9095 1.1855 0.9424 1.2209
0.20 0.80 �1.3824 0.7839 �0.6088 1.0506 0.3984 1.9867 0.9093 1.1875 0.9377 1.2241
0.25 0.75 �1.3626 0.7570 �0.6837 1.0502 0.3845 1.9910 0.9092 1.1905 0.9331 1.2287
0.30 0.70 �1.3407 0.7256 �0.7643 1.0450 0.3695 1.9972 0.9092 1.1946 0.9286 1.2353
0.35 0.65 �1.3156 0.6893 �0.8521 1.0334 0.3532 2.0066 0.9092 1.2001 0.9243 1.2447
0.40 0.60 �1.2857 0.6485 �0.9488 1.0130 0.3355 2.0221 0.9092 1.2071 0.9204 1.2585
0.45 0.55 �1.2480 0.6066 �1.0543 0.9813 0.3170 2.0497 0.9093 1.2148 0.9168 1.2795
0.50 0.50 �1.1993 0.5742 �1.1591 0.9425 0.3006 2.0985 0.9091 1.2202 0.9141 1.3121
0.55 0.45 �1.1463 0.5525 �1.2240 0.9090 0.2902 2.1677 0.9086 1.2205 0.9122 1.3592
0.60 0.40 �1.1151 0.5350 �1.1064 0.8337 0.2872 2.2349 0.9077 1.2221 0.9110 1.4152
0.65 0.35 �1.0843 0.5162 �1.0062 0.7777 0.2848 2.2967 0.9071 1.2248 0.9101 1.4761
0.70 0.30 �1.0546 0.4974 �0.9201 0.7333 0.2829 2.3539 0.9066 1.2285 0.9094 1.5404
0.75 0.25 �1.0259 0.4781 �0.8467 0.6977 0.2816 2.4073 0.9062 1.2331 0.9089 1.6074
0.80 0.20 �0.9984 0.4580 �0.7842 0.6690 0.2807 2.4575 0.9059 1.2382 0.9085 1.6766
0.85 0.15 �0.9719 0.4374 �0.7306 0.6456 0.2802 2.5051 0.9057 1.2438 0.9082 1.7475
0.90 0.10 �0.9465 0.4162 �0.6842 0.6260 0.2801 2.5505 0.9055 1.2497 0.9080 1.8198
0.95 0.05 �0.9222 0.3945 �0.6435 0.6093 0.2804 2.5938 0.9054 1.2559 0.9079 1.8934
1.00 0.00 �0.8989 0.3726 �0.6072 0.5945 0.2811 2.6353 0.9053 1.2625 0.9079 1.9679

Correlation = �0.8023

Table 7
Validation test for the average and standard deviation measurements.

Level i f :w: Conc. f :f Ra1 Ra2 Ra3 Ra ðlÞ Ra ðrÞ Rt1 Rt2 Rt3 Rt ðlÞ Rt ðrÞ
10% 1 0 5 0 0.48 0.60 0.47 0.519 0.072 3.05 3.36 2.57 2.992 0.398

2 0 10 10 0.58 0.75 0.59 0.643 0.095 3.26 4.52 3.00 3.592 0.813
3 0 15 20 0.41 0.63 0.46 0.503 0.115 2.46 2.50 2.93 2.629 0.261
4 0.15 5 10 0.51 0.60 0.51 0.543 0.052 2.72 3.22 2.57 2.836 0.340
5 0.15 10 20 0.46 0.42 0.47 0.453 0.026 2.38 2.40 3.22 2.666 0.479
6 0.15 15 0 0.43 0.54 0.51 0.496 0.057 2.39 2.56 4.54 3.162 1.195
7 0.3 5 20 0.73 0.96 0.60 0.766 0.182 5.62 4.57 3.98 4.722 0.831
8 0.3 10 0 0.32 0.27 0.21 0.269 0.055 3.14 2.53 2.50 2.722 0.361
9 0.3 15 10 0.47 0.33 0.43 0.413 0.072 3.86 2.72 3.97 3.516 0.692

LCB 0.351 0.055 2.039 0.403
UCB 0.673 0.157 4.369 1.142
RPD-MNBI 0.434 0.072 3.178 0.453

50% 1 0 5 0 0.08 0.14 0.18 0.133 0.050 1.20 2.25 1.56 1.665 0.534
2 0 10 10 0.19 0.24 0.27 0.233 0.040 1.85 2.02 2.05 1.969 0.108
3 0 15 20 0.26 0.32 0.28 0.287 0.031 1.64 3.29 1.92 2.279 0.883
4 0.15 5 10 0.39 0.42 0.33 0.380 0.046 3.15 2.02 2.73 2.629 0.571
5 0.15 10 20 0.36 0.41 0.41 0.393 0.029 1.97 2.14 2.44 2.179 0.238
6 0.15 15 0 0.21 0.37 0.24 0.273 0.085 1.41 2.01 1.79 1.732 0.304
7 0.3 5 20 0.91 0.72 0.20 0.610 0.368 5.82 6.22 3.16 5.062 1.663
8 0.3 10 0 0.17 0.19 0.16 0.173 0.015 3.70 3.40 3.16 3.415 0.271
9 0.3 15 10 0.21 0.17 0.07 0.150 0.072 3.17 3.67 1.65 2.825 1.052

LCB 0.062 0.080 1.804 0.474
UCB 0.524 0.226 4.012 1.345
RPD-MNBI 0.337 0.086 2.425 0.485

90% 1 0 5 0 0.15 0.12 0.28 0.181 0.085 2.40 1.01 1.80 1.732 0.697
2 0 10 10 0.17 0.32 0.23 0.237 0.075 1.68 1.66 1.62 1.649 0.031
3 0 15 20 0.24 0.18 0.29 0.234 0.055 2.23 1.51 3.63 2.452 1.078
4 0.15 5 10 0.30 0.29 0.32 0.301 0.015 3.66 2.72 2.29 2.885 0.701
5 0.15 10 20 0.10 0.20 0.27 0.187 0.085 0.97 1.50 1.21 1.222 0.265
6 0.15 15 0 0.18 0.08 0.16 0.137 0.053 1.63 1.08 1.03 1.242 0.333
7 0.3 5 20 0.59 0.23 0.30 0.371 0.191 4.34 2.23 2.53 3.029 1.142
8 0.3 10 0 0.26 0.37 0.55 0.391 0.146 2.61 2.80 2.52 2.639 0.143
9 0.3 15 10 0.14 0.78 0.54 0.484 0.323 2.22 4.68 3.38 3.422 1.231

LCB 0.026 0.088 0.923 0.459
UCB 0.535 0.249 3.582 1.303
RPD-MNBI 0.267 0.131 2.078 0.625

64 L.G.D. Lopes et al. / Computers & Industrial Engineering 93 (2016) 55–66
the three scenarios designed in the L9 analysis, the data
shown in Table 7 were produced. As expected, the RPD-MNBI
method provided not only a robust process but also estimates
inside the confidence bounds LCB (lower confidence bound)
and UCB (upper confidence bound) for mean and standard
deviation.
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6. Conclusions and future research

This paper has presented a new approach for robust multi-
objective optimization of experiments considering a combination
of methods to enable the process to be more resistant to variability.
Thus, an application of NBI combined with PCA to a combined
array for groups of mean and variance was employed in a finishing
end milling operation of AISI 1045 steel. To test the effectiveness of
the proposed method, the results of RPD-MNBI were compared to
the results of the weighted sumsmethod and the NBI-MSE method.

The hybrid method implemented in this paper generated a low
R2
Adj, due to the presence of noise within the control factors. To deal

with this issue, the WLS algorithm was implemented for the orig-
inal responses, Ra and Rt , and for the PCA(RaRt).

Taking the evaluated methods into account, the following find-
ings can be highlighted:

(a) It can be seen that the weighted sums method displayed a
series of united points on the Pareto Frontier which compli-
cated the identification of the optimum points.

(b) The NBI-MSE method was, in contrast, able to display a uni-
form Pareto Frontier.

(c) It was observed that both methods ignored the correlation
between responses and led to results that, in practice, were
unable to hold up.

(d) The RPD-MNBI method displayed an equally spaced Pareto
Frontier in a convex solution region with multiple solutions
and gradual trade-offs.

(e) The method considered the correlation structure between
responses. As a result it was feasible to perform validation
runs to obtain the optimum points identified in the Pareto
Frontier.

Three points from the Pareto Frontier were chosen to help prove
the ability of the method to mitigate the presence of noise in the
process. After determining the power and sample size with a dif-
ference of magnitude 0.2 for Ra and Rt responses with a
power = 82%, an L9 Taguchi design was used, producing validation
runs with 27 samples. The responses were estimated inside the
confidence bounds.

This work includes a novel of bi-objective case in which only
the first principal component was used. As future work it will be
of interest to understand how the inclusion of others controllable
variables and the need of more than one principal component will
affect the Pareto Frontier shifting the optimum points.
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